
HELMHOLTZ
CENTRE FOR
ENVIRONMENTAL
RESEARCH - UFZ

Tree Decomposition
Maren Kaluza

November 2018

UFZ

Table Of Contents

Introduction
Parallelization
Graphs, Trees

rivernetwork (Hydrology)
Tree Decomposition

Goal
Tree Data Structure
Cut Of A Subtree
Tree Decomposition
The Subtree Data Structure

MPI
Data Exchange Between Computing Nodes

OpenMP

Introduction

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

14

10881014

1 2 3 5 8 13

1235813+

14

10881014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410

881014

1 2 3 5 8 13

1235813+

1410

881014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

14108

81014

1 2 3 5 8 13

1235813+

14108

81014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

141088

1014

1 2 3 5 8 13

1235813+

141088

1014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

14108810

14

1 2 3 5 8 13

1235813+

14108810

14 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014

1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014 1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014

14

10

8

8

10

14

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014

1410881014

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units.

UFZ

Parallelization

Distribution of calculations onto multiple computational units, so parts of the
calculations can be done simultaneously.

1 2 3 5 8 13

1235813+

1410881014

1 2 3 5 8 13

1235813+

1410881014 14

10

8

8

10

14

Pro�t: in the optimal case the new calculation time is the serial time by the
number of computational units. UFZ

Parallelization

A cheese cake needs about 18 hours for baking. How much time is needed to
bake the cheese cake with the same result if there where 6 ovens available?

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13

21 34
+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13

21 34
+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13 21

34
+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13 21 34

+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13 21 34
+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13 21 34
+

+

+

UFZ

Parallelization

Fibonacci sequene (shifted by 1)

1 2 3 5 8 13 21 34
+

+

+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2
+

3
+

3
+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2
+

3
+

3
+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2
+

3
+

3
+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2

+

3
+

3
+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2

+

3

+

3
+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2

+

3

+

3

+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2

+

3

+

3

+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

2

+

3

+

3

+

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

1
1 1

1 1
1 1

1 1
1 1

22
3 33 3

4
+

4
+

6
+

4
send/share

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

1
1 1

1 1
1 1

1 1
1 1

22
3 33 3

4
+

4
+

6
+

4
send/share

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

1
1 1

1 1
1 1

1 1
1 1

22
3 33 3

4

+

4

+

6
+

4
send/share

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

1
1 1

1 1
1 1

1 1
1 1

22
3 33 3

4

+

4

+

6

+

4
send/share

UFZ

Parallelization

Pascal triangle

1
1 1

1 1
1 1

1 1
1 1

1
1 1

1 1
1 1

1 1
1 1

22
3 33 3

4

+

4

+

6

+

4

send/share

UFZ

Graphs

1 vertex

graph

2
edge

Graph

3

4

5 6

Cycle (nevertheless a graph)

7

8

no cycle, but a connected graph

9

an unconnected graph

UFZ

Graphs

1

vertex

graph

2
edge

Graph

3

4

5 6

Cycle (nevertheless a graph)

7

8

no cycle, but a connected graph

9

an unconnected graph

UFZ

Graphs

1

vertex

graph

2

edge

Graph

3

4

5 6

Cycle (nevertheless a graph)

7

8

no cycle, but a connected graph

9

an unconnected graph

UFZ

Graphs

1

vertex

graph

2

edge

Graph

3

4

5 6

Cycle (nevertheless a graph)

7

8

no cycle, but a connected graph

9

an unconnected graph

UFZ

Graphs

1

vertex

graph

2

edge

Graph

3

4

5 6

Cycle (nevertheless a graph)

7

8

no cycle, but a connected graph

9

an unconnected graph

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree

UFZ

Trees

A tree is acyclic connected graph

23

4

5 6

7

8

3

24

5

6

7

8

24

5

6

7 8

24

5

6

7 8

gewurzelter Baum, Out-tree

24

5

6

7 8

gewurzelter Baum, In-tree UFZ

rivernetwork (Hydrology)

UFZ

Tree Decomposition

UFZ

Tree Decomposition

The idea is to decompose the tree into subtrees and distribute these onto
computing nodes.

the case of dynamic distribution of subtrees onto the nodes has been
studied [Li et al., 2011]
we discuss a static distribution

UFZ

Tree Decomposition
Example: Testbasin

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

As test basin we use the Moselle with 34 cells.

UFZ

Tree Decomposition
Example: Testbasin

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

As test basin we use the Moselle with 34 cells.

UFZ

Tree Decomposition
Example: Testbasin

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

As test basin we use the Moselle with 34 cells.

UFZ

Tree Decomposition
Goal

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

Cut of subtrees with nice sizes recursively and
distribute them onto the computing nodes:
1. choose a size range (lowBound)
2. search the smallest subtree larger than

lowBound in the tree
3. cut of that subtree, store it somewhere
4. start from step 2
5. schedule independend subtrees on

di�erent nodes
6. establish communication between nodes

as far as necessary
UFZ

Tree Decomposition
Goal

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

example: lowBound= 3

UFZ

Tree Decomposition
Goal

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

example: lowBound= 3

UFZ

Tree Decomposition
Goal

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

example: lowBound= 3

UFZ

Tree Decomposition
Goal

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

34

1
2

3

5
6

4

7

8

9

10 11

example: lowBound= 3

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6

This is the shortest schedule, we can get with
this subtrees: The tree depth is 7, we can not
have a schedule shorter than the tree depth

UFZ

Tree Decomposition
Goal

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

341
2

3

5
6

4

7

8

9

10 11 example: lowBound= 3

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6

This is the shortest schedule, we can get with
this subtrees: The tree depth is 7, we can not
have a schedule shorter than the tree depth

UFZ

Tree Decomposition
Goal

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

341
2

3

5
6

4

7

8

9

10 11 example: lowBound= 3

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6

This is the shortest schedule, we can get with
this subtrees: The tree depth is 7, we can not
have a schedule shorter than the tree depth

UFZ

Tree Decomposition
Goal

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

341
2

3

5
6

4

7

8

9

10 11 example: lowBound= 3

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6

This is the shortest schedule, we can get with
this subtrees: The tree depth is 7, we can not
have a schedule shorter than the tree depth

UFZ

Tree Decomposition
Tree data structure: basic info

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

A classical tree data structure contains:
post: a pointer to the parent tree node
Nprae: the number of children
prae: an array of pointers to the children

(note: each node is also a tree)

UFZ

Tree Decomposition
Tree data structure: speci�c for tree decomposition

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

Speci�c data for the tree decomposition
siz: the size of the tree
sizUp: the size of the smallest subtree
larger than lowBound
ST: a pointer to metadata, if the tree node
is the root node of a subtree

UFZ

Tree Decomposition
Tree data structure: derived type

type ptrTreeNode
type(treeNode), pointer :: tN

end type ptrTreeNode
type treeNode

type(ptrTreeNode) :: post
integer(i4) :: Nprae
type(ptrTreeNode),dimension(:),allocatable :: prae
integer(i4) :: siz
integer(i4) :: sizUp
type(subtreeNode), pointer :: ST

end type treeNode

UFZ

Tree Decomposition
Tree data structure: Set siz for each node

341
32 33

25

23
1

192

1 13

2

1

10 5 1

4

52

1 2

1 3 2 1
3 2 1

3 2

13 2

1

initialize siz with 1 for each tree node
run though tree in routing order
for each tree node:
I for all its children add the value of siz of

each child to own value of siz

UFZ

Tree Decomposition
Tree data structure: Set sizUp for each node

21
3 3

3

3
1

31

1 3

1

1

3 3 2
3

51

1 1

1 3 1 1
3 1 1

3 1

13 1

1

initialize sizeUp with 1 for each tree node
run though tree in routing order
for each tree node:
I for all its children check, if sizUp has

already been set for at least one child
I if so, set sizUp of current tree node to

the smallest of that values of its children
I if not, check if siz≥sizUp
I if so, set sizUp=siz
I else sizUp=1 (this has to be set, so the

subroutine can update the tree after a
subtree gets cut of)

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

cut of a subtree in sublinear time (depth of
tree)
Main idea, follow the branch with the smallest
subtree (find_branch)
[Thomas H. Cormen, 2009, Harder, 2018]
start as root:
1. if one of the children of the current tree

node has sizUp> 1
2. then switch to the child with the smallest

value for sizUp, go to step 1
3. else cut of subtree at that node

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

2

find_branch example:
1. tree node 2 has one child 6
2. 6 has sizUp> 1 therefore we move to 6

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

6

find_branch example:
1. tree node 6 has one child 5
2. 5 has sizUp> 1 therefore we move to 5

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

5
find_branch example:
1. tree node 5 has three childen 1, 4, 9
2. 1 has sizUp=1 (means not set), 4 has

sizUp= 5, 9 has sizUp= 3, therefore we
move to 9

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

9 find_branch example:
1. tree node 9 has two childen 10, 12
2. 10 has sizUp=1 (means not set), 12 has

sizUp= 3, therefore we move to 12

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

12
find_branch example:
1. tree node 12 has two childen 13, 17
2. 13 and 17 both have sizUp= 3, therefore

we move to 13

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13
find_branch example:
1. tree node 13 has one child 14
2. sizUp values of all children of 13 are

unset, therefore we cut of 13

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13

cut of a subtree
return a pointer to the subtree root (13)
update_sizes
initiate_subtreetreenode
in the parent node:
I switch the cut of child with the last child

in the prae array
I reduce Nprae by one

update_tree

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13
update_sizes:
for the cut of subtree (13) with size redSize
(3)
1. if not root, move to parent
2. reduce siz of curret node by redSiz, go

to 1

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13

initiate_subtreetreenode:
associate and allocate pointer ST of tree
node
set size of subtreetreenode to current size
of tree node (after updating the tree
structure, it is the correct size of the
subtree)
initialize other meta data with 0 and
nullpointers

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13 update_tree:
start at cut of tree node
1. update sizUp (as it was done before)
2. if not root, go to parent, go to step 1

UFZ

Tree Decomposition
Cut Of A Subtree

21
5 6

9

12

10

1716

21 22
26

30

23 24 25

27

43

7 8

11 13 14 15

18 19 20

28 29

3331 32

34

13

Special cases in the procesess of cutting of
subtrees:
root has no parent to be updated, so it has to
be handled separately

if one of its children has sizeUp> 1,
follow branch as usual
else, cut of root

UFZ

Tree Decomposition
Tree Decomposition

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

decompose
as long as the last cut of subtree is not
root
I �nd and cut of subtree, return pointer to

subtree
I write pointer into an array

set metadata of subtree nodes
appropriately (set pointer to parents and
children)

UFZ

Tree Decomposition
Tree Decomposition

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

decompose
as long as the last cut of subtree is not
root
I �nd and cut of subtree, return pointer to

subtree
I write pointer into an array

set metadata of subtree nodes
appropriately (set pointer to parents and
children)

UFZ

Tree Decomposition
The Subtree Data Structure

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

each subtreetree node has an associated
pointer to derived type subtreeNode with
classical tree data structure. . .

postST: a pointer to the parent tree node
(points to tree node)
NpraeST: number of (subtreetree)
children
praeST: array of pointers to the
(subtreetree) children

UFZ

Tree Decomposition
The Subtree Data Structure

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

. . .and speci�c information for scheduling
levelST: an array saving the distance to
the root node and the distance to the
farthest leaf in the subtreetree structure
for scheduling purposes

UFZ

Tree Decomposition
Tree data structure: derived type

type treeNode
... (s.o.)
type(subtreeNode), pointer :: ST

end type treeNode
type subtreeNode

type(ptrTreeNode) :: postST
integer(i4) :: NpraeST
type(ptrTreeNode),dimension(:),allocatable :: praeST
integer(i4) :: sizST
integer(i4), dimension(2) :: levelST

end type subtreeNode

UFZ

Tree Decomposition
Tree decomposition: scheduling

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

1
2

3

5
6

4

7

8

9

10 11

di�erence between two scheduling methods:

round robin
timeslots

process 1: 1 4 7 10
process 2: 2 5 8 11
process 3: 3 6 9

UFZ

Tree Decomposition
Tree decomposition: scheduling

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

34

4
3

2

1
9

5

6

7

8

10 11

1
2

3

5
6

4

7

8

9

10 11

di�erence between two scheduling methods:

Hu’s algorithm[Hu, 1961, Cheng and Sin, 1990]

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6

UFZ

MPI

UFZ

MPI
MPI

n processes run the program
each process knows its own rank and the number of processes
in our case, process with rank 0 is the master process and cooridnates
each process has its own memory, data has to be exchanged viamessage
sending interface (MPI)

UFZ

Tree Decomposition
Data Exchange Between Computing Nodes: Another Data Structure

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

341
2

3

5
6

4

7

8

9

10 11

tree data structures mainly constist of
pointers that refer to physical memory
adresses. Sending this data across nodes does
not help. Solution:

save the inices of the grid cells into an
array in routing order, where the subtrees
lay together
save a toNode array for the links/edges

UFZ

MPI
basic structure
if process has rank 0:

decompose tree
prepare array in routing order and toNode array
send subarrays and corresponding toNodes to the other processes
send indices of leaves which are connected to subtree roots to processes
I collect data from root nodes of the subtrees and send it to corresponding

leaf nodes of adjacent subtree
in the end: recollect subarrays

else:
receive subarray, toNodes, and node indices of corresponding subtrees
I collect input data for some leaves
I do routing
I send root output data to master

in the end: send subarray back UFZ

MPI
Does It Work?

No, not that easily.
Communication needs more time than routing through arrays of size 10000.
A representative basin, Donau, has 26507 cells.
Ideas:

do routing several times in a subtree, send array of data instead of one
value
or parallelize only independent trees with MPI

We are lucky: the �rst idea works

UFZ

MPI
Times

30 60 90 120 150 180

5

10

15

20

Size of subtrees [-]

Time [s]
3
5
7
9
11
13
15
17
19
21

the basin tested, is the
donau with 26507 cells
collect arrays of 1000 data
points before sending
time is measured every
1000 steps (so 1000×1000
routing per time
measurement)

UFZ

MPI
Times

30 60 90 120 150 180

5

10

15

20

Size of subtrees [-]

Time [s]
3
5
7
9
11
13
15
17
19
21

cutting into subtrees with
sizes smaller than 50
results in communication
overhead, means
communication between
the nodes takes more time
than routing 1000 times
through a subtree

UFZ

MPI
Times

1 5 9 13 17 21

4

8

12

16

Number of Processes p [-]

Pr
oc
.T
im
e
T p

[s]

for each number of procsesses
the y-value is the minimum of the
curves above
more processors still make it
faster but it does not tend to zero

UFZ

OpenMP

UFZ

OpenMP
di�erences to MPI

arrays are not send over the network, but exchanged via shared memory
I we have to handle data race problems

sorting of subtrees to threads is not done by us but dynamically:
I the routing through a subtree is assigned to a task
I a waiting CPU gets a task/subtree when available

UFZ

OpenMP
some code

!$OMP parallel private(rank) shared(testarray)
!$OMP single
call routing(root,testarray)
!$OMP end single
!$OMP barrier
!$OMP end parallel

UFZ

recursive subroutine routing(root,array)
...
do jj=1,root%tN%Nprae

!$OMP task shared(root,array)
call routing(root%tN%ST%prae(jj),array)
!$OMP end task

end do
!$OMP taskwait
if (associated(root%tN%post%tN)) then

tNode=root%tN%post%tN%ind
!$OMP critical
array(tNode)=array(tNode)+array(root%tN%ind)
!$OMP end critical

end if
end subroutine routing

OpenMP
Times

30 60 90 120 150 180

10

20

30

40

50

Size of subtrees [-]

Time [s]

the basin tested, is again the
donau with > 22000 cells
collect arrays of 1000 data points
before writing into shared array
time is measured every 1000 steps
(so 1000×1000 routing per time
measurement)

UFZ

OpenMP
Times

1 5 9 13 17 21

10

20

30

Number of Processes p [-]

Pr
oc
.T
im
e
T p

[s] OpenMP
MPI

for each number of processes the
y-value is the minimum over
lowBound

UFZ

OpenMP
Times, reasons MPI is faster

code with OpenMP tasks compiles poorly with gnu, intel is better
Tasks are not sorted by priority. The tree is not a binary tree and it is
unbalanced. (Approach: Use newer version of OpenMP, currently reading
more literature)

UFZ

OpenMP
Times, compiled with Intel

30 60 90 120 150 180

5

10

15

20

Size of subtrees [-]

Time [s]

the basin tested, is again the
donau with > 22000 cells
collect arrays of 1000 data points
before writing into shared array
time is measured every 1000 steps
(so 1000×1000 routing per time
measurement)

UFZ

OpenMP
Times

1 5 9 13 17 21
4

8

12

16

20

24

28

32

Number of Processes p [-]

Pr
oc
.T
im
e
T p

[s] OpenMP
OpenMP with intel

MPI

for each number of processes the
y-value is the minimum over
lowBound

UFZ

OpenMP
Times

1 5 9 13 17 21
1

2

3

4

5

6

Number of Processes p [-]

Sp
ee
du

p
T 1 T p

[-]

OpenMP with intel
MPI

Speedup is the sequentual time
devided by the processing time
with p processors T1

Tp .

Best case szenario is T1
Tp = p

We will never reach this because
of the lower bound given by the
tree depth

UFZ

Cheng, T. and Sin, C. (1990).
A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research, 47(3):271–292.

Harder, J. (2018).
Discussions.
Hu, T. C. (1961).
Parallel sequencing and assembly line problems.
Operations research, 9(6):841–848.

Li, T., Wang, G., Chen, J., and Wang, H. (2011).
Dynamic parallelization of hydrological model simulations.
Environmental Modelling & Software, 26(12):1736–1746.

Thomas H. Cormen, Charles E. Leiserson, R. L. R. C. S. (2009).
Introduction to Algorithms.
MIT Press, 3rd edition. UFZ

	Introduction
	Parallelization
	Graphs, Trees

	rivernetwork (Hydrology)
	Tree Decomposition
	Goal
	Tree Data Structure
	Cut Of A Subtree
	Tree Decomposition
	The Subtree Data Structure

	MPI
	Data Exchange Between Computing Nodes

	OpenMP

