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Parallelization
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Parallelization

A cheese cake needs about 18 hours for baking. How much time is needed to
bake the cheese cake with the same result if there where 6 ovens available?
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Graphs
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graph
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A tree is acyclic connected graph
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Tree Decomposition

The idea is to decompose the tree into subtrees and distribute these onto
computing nodes.

the case of dynamic distribution of subtrees onto the nodes has been
studied [Li et al., 2011]
we discuss a static distribution

UFZ



Tree Decomposition
Example: Testbasin
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Tree Decomposition
Goal
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Cut of subtrees with nice sizes recursively and
distribute them onto the computing nodes:
1. choose a size range (lowBound)
2. search the smallest subtree larger than

lowBound in the tree
3. cut of that subtree, store it somewhere
4. start from step 2
5. schedule independend subtrees on

di�erent nodes
6. establish communication between nodes

as far as necessary
UFZ
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timeslots
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this subtrees: The tree depth is 7, we can not
have a schedule shorter than the tree depth
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Tree Decomposition
Tree data structure: basic info
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A classical tree data structure contains:
post: a pointer to the parent tree node
Nprae: the number of children
prae: an array of pointers to the children

(note: each node is also a tree)
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Tree Decomposition
Tree data structure: speci�c for tree decomposition
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Speci�c data for the tree decomposition
siz: the size of the tree
sizUp: the size of the smallest subtree
larger than lowBound
ST: a pointer to metadata, if the tree node
is the root node of a subtree

UFZ



Tree Decomposition
Tree data structure: derived type

type ptrTreeNode
type(treeNode), pointer :: tN

end type ptrTreeNode
type treeNode

type(ptrTreeNode) :: post
integer(i4) :: Nprae
type(ptrTreeNode),dimension(:),allocatable :: prae
integer(i4) :: siz
integer(i4) :: sizUp
type(subtreeNode), pointer :: ST

end type treeNode

UFZ



Tree Decomposition
Tree data structure: Set siz for each node
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1

initialize siz with 1 for each tree node
run though tree in routing order
for each tree node:
I for all its children add the value of siz of

each child to own value of siz
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Tree Decomposition
Tree data structure: Set sizUp for each node
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1

initialize sizeUp with 1 for each tree node
run though tree in routing order
for each tree node:
I for all its children check, if sizUp has

already been set for at least one child
I if so, set sizUp of current tree node to

the smallest of that values of its children
I if not, check if siz≥sizUp
I if so, set sizUp=siz
I else sizUp=1 (this has to be set, so the

subroutine can update the tree after a
subtree gets cut of)
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Tree Decomposition
Cut Of A Subtree
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cut of a subtree in sublinear time (depth of
tree)
Main idea, follow the branch with the smallest
subtree (find_branch)
[Thomas H. Cormen, 2009, Harder, 2018]
start as root:
1. if one of the children of the current tree

node has sizUp> 1
2. then switch to the child with the smallest

value for sizUp, go to step 1
3. else cut of subtree at that node
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Cut Of A Subtree
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2

find_branch example:
1. tree node 2 has one child 6
2. 6 has sizUp> 1 therefore we move to 6
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find_branch example:
1. tree node 6 has one child 5
2. 5 has sizUp> 1 therefore we move to 5
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Cut Of A Subtree
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5
find_branch example:
1. tree node 5 has three childen 1, 4, 9
2. 1 has sizUp=1 (means not set), 4 has

sizUp= 5, 9 has sizUp= 3, therefore we
move to 9
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Tree Decomposition
Cut Of A Subtree
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9 find_branch example:
1. tree node 9 has two childen 10, 12
2. 10 has sizUp=1 (means not set), 12 has

sizUp= 3, therefore we move to 12
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Tree Decomposition
Cut Of A Subtree
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12
find_branch example:
1. tree node 12 has two childen 13, 17
2. 13 and 17 both have sizUp= 3, therefore

we move to 13
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Tree Decomposition
Cut Of A Subtree
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13
find_branch example:
1. tree node 13 has one child 14
2. sizUp values of all children of 13 are

unset, therefore we cut of 13
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Tree Decomposition
Cut Of A Subtree
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13

cut of a subtree
return a pointer to the subtree root (13)
update_sizes
initiate_subtreetreenode
in the parent node:
I switch the cut of child with the last child

in the prae array
I reduce Nprae by one

update_tree

UFZ



Tree Decomposition
Cut Of A Subtree
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13
update_sizes:
for the cut of subtree (13) with size redSize
(3)
1. if not root, move to parent
2. reduce siz of curret node by redSiz, go

to 1
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Tree Decomposition
Cut Of A Subtree
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13

initiate_subtreetreenode:
associate and allocate pointer ST of tree
node
set size of subtreetreenode to current size
of tree node (after updating the tree
structure, it is the correct size of the
subtree)
initialize other meta data with 0 and
nullpointers
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13 update_tree:
start at cut of tree node
1. update sizUp (as it was done before)
2. if not root, go to parent, go to step 1

UFZ



Tree Decomposition
Cut Of A Subtree
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13

Special cases in the procesess of cutting of
subtrees:
root has no parent to be updated, so it has to
be handled separately

if one of its children has sizeUp> 1,
follow branch as usual
else, cut of root
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Tree Decomposition
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decompose
as long as the last cut of subtree is not
root
I �nd and cut of subtree, return pointer to

subtree
I write pointer into an array

set metadata of subtree nodes
appropriately (set pointer to parents and
children)
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I write pointer into an array

set metadata of subtree nodes
appropriately (set pointer to parents and
children)
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Tree Decomposition
The Subtree Data Structure

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

each subtreetree node has an associated
pointer to derived type subtreeNode with
classical tree data structure. . .

postST: a pointer to the parent tree node
(points to tree node)
NpraeST: number of (subtreetree)
children
praeST: array of pointers to the
(subtreetree) children
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Tree Decomposition
The Subtree Data Structure

21

5 6

9

12

10

1716

21

22

26

30

23 24 25

27

43

7 8

11

13 14 15

18 19 20

28 29

3331 32

344
3

2

1
9

5

6

7

8

10 11

. . .and speci�c information for scheduling
levelST: an array saving the distance to
the root node and the distance to the
farthest leaf in the subtreetree structure
for scheduling purposes
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Tree Decomposition
Tree data structure: derived type

type treeNode
... (s.o.)
type(subtreeNode), pointer :: ST

end type treeNode
type subtreeNode

type(ptrTreeNode) :: postST
integer(i4) :: NpraeST
type(ptrTreeNode),dimension(:),allocatable :: praeST
integer(i4) :: sizST
integer(i4), dimension(2) :: levelST

end type subtreeNode
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Tree Decomposition
Tree decomposition: scheduling
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di�erence between two scheduling methods:

round robin
timeslots

process 1: 1 4 7 10
process 2: 2 5 8 11
process 3: 3 6 9
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Tree Decomposition
Tree decomposition: scheduling
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di�erence between two scheduling methods:

Hu’s algorithm[Hu, 1961, Cheng and Sin, 1990]

timeslots
process 1: 1 4 7 8 9 10 11
process 2: 2 5
process 3: 3 6
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MPI
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MPI
MPI

n processes run the program
each process knows its own rank and the number of processes
in our case, process with rank 0 is the master process and cooridnates
each process has its own memory, data has to be exchanged viamessage
sending interface (MPI)
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Tree Decomposition
Data Exchange Between Computing Nodes: Another Data Structure
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tree data structures mainly constist of
pointers that refer to physical memory
adresses. Sending this data across nodes does
not help. Solution:

save the inices of the grid cells into an
array in routing order, where the subtrees
lay together
save a toNode array for the links/edges
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MPI
basic structure
if process has rank 0:

decompose tree
prepare array in routing order and toNode array
send subarrays and corresponding toNodes to the other processes
send indices of leaves which are connected to subtree roots to processes
I collect data from root nodes of the subtrees and send it to corresponding

leaf nodes of adjacent subtree
in the end: recollect subarrays

else:
receive subarray, toNodes, and node indices of corresponding subtrees
I collect input data for some leaves
I do routing
I send root output data to master

in the end: send subarray back UFZ



MPI
Does It Work?

No, not that easily.
Communication needs more time than routing through arrays of size 10000.
A representative basin, Donau, has 26507 cells.
Ideas:

do routing several times in a subtree, send array of data instead of one
value
or parallelize only independent trees with MPI

We are lucky: the �rst idea works
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MPI
Times
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the basin tested, is the
donau with 26507 cells
collect arrays of 1000 data
points before sending
time is measured every
1000 steps (so 1000×1000
routing per time
measurement)
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MPI
Times
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cutting into subtrees with
sizes smaller than 50
results in communication
overhead, means
communication between
the nodes takes more time
than routing 1000 times
through a subtree
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MPI
Times

1 5 9 13 17 21

4
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Number of Processes p [-]
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.T
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T p

[s]

for each number of procsesses
the y-value is the minimum of the
curves above
more processors still make it
faster but it does not tend to zero
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OpenMP
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OpenMP
di�erences to MPI

arrays are not send over the network, but exchanged via shared memory
I we have to handle data race problems

sorting of subtrees to threads is not done by us but dynamically:
I the routing through a subtree is assigned to a task
I a waiting CPU gets a task/subtree when available

UFZ



OpenMP
some code

!$OMP parallel private(rank) shared(testarray)
!$OMP single
call routing(root,testarray)
!$OMP end single
!$OMP barrier
!$OMP end parallel

UFZ



recursive subroutine routing(root,array)
...
do jj=1,root%tN%Nprae

!$OMP task shared(root,array)
call routing(root%tN%ST%prae(jj),array)
!$OMP end task

end do
!$OMP taskwait
if (associated(root%tN%post%tN)) then

tNode=root%tN%post%tN%ind
!$OMP critical
array(tNode)=array(tNode)+array(root%tN%ind)
!$OMP end critical

end if
end subroutine routing



OpenMP
Times
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Size of subtrees [-]

Time [s]

the basin tested, is again the
donau with > 22000 cells
collect arrays of 1000 data points
before writing into shared array
time is measured every 1000 steps
(so 1000×1000 routing per time
measurement)
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OpenMP
Times
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10
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Number of Processes p [-]
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T p

[s] OpenMP
MPI

for each number of processes the
y-value is the minimum over
lowBound
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OpenMP
Times, reasons MPI is faster

code with OpenMP tasks compiles poorly with gnu, intel is better
Tasks are not sorted by priority. The tree is not a binary tree and it is
unbalanced. (Approach: Use newer version of OpenMP, currently reading
more literature)
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OpenMP
Times, compiled with Intel
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Size of subtrees [-]

Time [s]

the basin tested, is again the
donau with > 22000 cells
collect arrays of 1000 data points
before writing into shared array
time is measured every 1000 steps
(so 1000×1000 routing per time
measurement)
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OpenMP
Times
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[s] OpenMP
OpenMP with intel

MPI

for each number of processes the
y-value is the minimum over
lowBound
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OpenMP
Times
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1
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ee
du

p
T 1 T p

[-]

OpenMP with intel
MPI

Speedup is the sequentual time
devided by the processing time
with p processors T1

Tp .

Best case szenario is T1
Tp = p

We will never reach this because
of the lower bound given by the
tree depth

UFZ
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